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Absiract Assessment of hazards assoclated with atmospheric releases of poliutants, whether toxic or fammable, requires
the modelling of concentration Hustuations in turbulent flows. In particular, it is desirable to he able to model the
probability density function (pdf) of concentration. This can be achisved by modplhuﬂ moments of concentration, and
combining them with some prescription: of the pdf in terms of the moments. This paper addresses the question of
maodelling the conceniration moments, The approach is based on t
by Chatwin & Sullivan [1990a] that the variance and hig

the mean concentration 4, and of 2 parameters o and 3, which may be functions of spatial position and time, Sullivan
and Moseley used a closure to consiract a modsl for « and 4, given a model for ¢, To develop the model th ey considerad
the idealised case of an unbounded, homogeneous turbulent flow, with a Gaussian spatial distribution for o In 2 and 3
spatial dimensions this model gave unphysical results. Clarke & Male [1995] used a different closure to obtain physically
sensible results in 1, 2 and 3 dimensions. The present paper outlinas this model and the results obtained with Gausszian
#. It then goes on to assess the sensitivity of the results to the assumption of Gaussian spatial variation of the mean. This
is accomplished using polynoemial approximations to a Gaussian, and more slowly decaying (exponential and algebraic)
functions. For moderate times the differences are not significant, falling within the range of uncertainties associated
with other aspects of the model, such as the closure constant. At large times, however, there are la rge differences, even
between the Gaussian and the polynomial approximations. In some cases o tends $o a fnite constant (< 21n nmriy all
cases) at large times, while in others it grows without limit. The large time hehaviour is only approached very slowly
though, so for practical purposes it can probably be assurned that the spatial structure of the mean concentration does
not have a critical sffect.
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mncentrauon can be expressed as functions of

igher morments o

where & is the molecular diffusivity and the {random)
velocity ¥(x,t) satisfies the Navier-Stokes equation. {2}
Atmospheric lows are invariably turbulent, i.e. random. leads (Chatwin & Sullivan [1990b]) so the following equa-
Models of the dispersion of pollutants in the atmosphere tion for the absolute moments £ {T"} forn > 2:

must, therefore, be constructed to include the effects of

turbulence. In particular, the random character of the

i, INTRODUCTIOT

velocity field and, hence, of the pollutant concentration a .
Held, must be Incorporated in the modelling. A major tar- 5 /E {I"}dV = —nin — l)hf/ E{Tr 3v1)?}dv,
get of research into pollutant dispersion is to formulate ot ()

models for the probability density function (pdf) p{x,7)
of concentration I'{x,t), where x is the spatial position
and ¢ is time. One way of achieving this is to model the
lowest order moments of T', which can then be used to
derive p{x,t}, e.g. via maximum entropy methods (Derk-
sen & Sullivan [1890]) or by substitution inio a Speuﬁed

where the integrals are taken over all space. {2) holds ex-
actly if T = of|x|=("=1/") in unbounded regions, where
m is the number of spatial dimensions.

parametric form such as the lognormal, beta, gamma, or o THE MODFL FOR CONCENTRATION

truncated normal. In this paper we consider only the FLUCTUATION MOMENTS
problem of modelling the moments of T. Furthermors,

we restrict attention to conserved pollutants of the same Chatwin & Sullivan [1990a] considered the problem of

density as the amblent air, so that they can be considered dispersing passive scalars released from a steady source

as passive scalars. of uniform concentration in turbulent flows which are

. . . . self-siintlar (so that the concentration moments, when

The equation governing the concentration ['{x,f) is then appropriately normalised, depend on downwind distance

only through nommalising length scales for the crosswind

ST ) _ coordinates). They postulated that the mean concen-

e + LV =gV, ) tration g = E{I'}, the variance of concentration ¢ =

E{(T = 4)*} and the higher central moments of concen-
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tration E{{I' — )"} satisfied, to a good approximation,
the following relationships:

7 = FF oo — ) (%)

s T

E{(I - "} A”ﬁiv (’a #)

Ho \ Ho

where oo, # and A, are parameters and jg is a local scule
for p (e.g. the largest value of 4 in a cross-section). They
presented experimental evidence in support of {3) and
{4}, and more support has subssquently emerged (Sulli-
van & Yip [1989], Chatwin et al. [1980], Moseley {1991],
Sawford & Sullivan [1995]), including for some non-self-
similar flows to which their arguments should also apply.
In self-similar regimes o and 4 are constants, but more
generally they would be expected to depend on dowawind
distance for steady releases, and on time t for instanta-
neous releases. Chatwin & Sullivan [1600a] argued that
A i’” is O{1). A first approximation would therefore be to
set 4, = 1. (Equations {3} and (4) then correspond ex-
actly to a pdf consisting of 2 delta functions, and further
modifications are needed to derive a realistic pdf—see Ye
(1995}, Sullivan & Ye [1985].) All central concentration
fiuctuation moments E{{I"~u)"} could then be modelled
by modelling o, 3 and u{x,t).

Sullivan & Moseley constructed a model for the evolution
of @ and 3, given a model for the mean concentration p
{Moseley [1991]). This was based on (2}, together with
(3) and (4) with n = 3 and the closure assumption

wrp=a(552) 6)

Here X is the conduction cut off (i.e. the sinallest length
seale present in the concentration fleld) and A 1s a con-
stant. They dealt only with the idealised case of disper-
sion in unbounded, homogeneous turbulent flow (as we
shall too for model development purposes), and assurned
that u had a Gaussian profile:

()

plx 1) = (e 1T (6)

where I is the cloud width and pp is the mean concentra-
tion at the cloud centre. The assumption of a Gaussian
profile is usually & good one as long as the source (for
steady releases) or the release time {for instantaneous re-
leases) are not approached too closely, Two forms were
assumed for L the inertial subrange result for interme-
diate times (Batchelor [1952]), applicable to relative dif-
fusion in high Reynolds number envirenrnental flows,

I i
— = To7?, 7
(Lo) 1 Xg7?, {i)

and the large time result for homogeneous turbulence
{Batchelor [1949]) {often approximated in wind tunnel
grid turbulence),

o

(%) =14 (8)

Here Lg is the initial cloud width, 7 = 24xt/A? is the
non-dimensional time,
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¢ is a constant, Ay = (x%/e)}/* is the Kolmogorov mi-
croscale for the concentration field, € is the dissipation
rate and &g is the growth rate of L? ie. an “eddy diffu-
sivity”. For an instantanecus cloud release the erquations
need to be solved in 3 spatial dimensiens, for a continu-
ous point source 2 spatial dirensions are reguired, and
for a continuous line source 1 spatial dimeunsion. In the
latter two cases the temporal evolution in the model is
converted to a downwind evolution through the relation
X = (7t where X is the downwind distance from the
source and [7 is the mean windspeed.

In 1 spatial dimension this model generaily predicted a
rise in o from its initial value of 1 to a maximum, and 2
subsequent decrease to a value between 1 and 2. (Note
that & < 2 implies that the variance has a bimodal spatial
siructure, whereas for o > 2 it is unimodal.] However,
in 2 and 3 spatial dimensions it gave the unphysical re-
sult o < 1 (implying negative variance at the cloud cen-
sre from {3)), and breakdown of the nunerical solutions.
Clarke & Mole [1995] showed the latter to be associated
with a singularity in the evolution equations for « and 2,
and overcame both these problems by using the following
closure, instead of (5}

il

)\QE n—2r 2 1 n—2 2
S E{THE } FEATTHT = w) }

1 .
+ §E{r"”2}E{(r—p)2}.

3, RESULTS FOR GAUSSIAN MEAN

Figure 1 shows the evolution of & and 8 using this new
closure, for ©; = 1 and ¥y = 100, In all cases o in-
creases, reaches a peak (in ail cases shown this is for 7 less
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Slomal = mensions o appears to increase without lmit. Analysis
i LR -
. /\ 7 of the evolution equations confirms these limiting results.
15 o
_ / ~— | 10 §/ We find that, regardless of the assumed growth rate of
g .
. B ; L, o tends to an asympiotic value, o, as 7 — oo, Ifm
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non-dipensional time
We have tested the sensitivity of some of these results
Figure 1: Evolution of o {solid line} and & (dashed liilf‘) to the assumnption of a Gaussian profile for mean con-
in non-dimensional time 7 Rebults are shown for 1, centration. Let the mean concentration be given by, in
and 3 spatial dimensions, and for &; = 1, 100. centre-of-mass coordinates,

_ | w0 1) = po(t)g() (9)
than about 10) and then decreases, in all cases reaching

a value between 1 and 2 by v = 30, 8 generally decreases ‘ R

towards zero, sometimes monotonically, and sometimes Whlere g = xf*/2L% Thus the Gaussion form (6) his

with a subsidiary maximum. Larger and later peaks in glo) = ¢ ?. We assumed that L was SF‘H given by (7

a result from a higher number of spatial dimensions and and {8), but chose different forms for y(4).

from larger & values, The resuits for Ty (not shown) are )

broadly :imiiar, with larger and later peag{s ina thai. for L?t Q"l = [pdVand @ =0y Qisa (orlstiant E(.Bh?
The largest value of o in Figure 1 is about 27,000 (for a{mount of pollutant released). If * denotes gz, then from

¥y = 100, m = 3). While values of o so far observed are (9) we have

all (1), it is not clear that large values can be ruled out.

In the model the conceniration moments remain finite 19,

even if o — co. Large values of & correspond to a linear AR = eefn - Dim=

rather than guadratic relationship between the variance

and the mean (ses equation {3)). Chatwin & Sullivan ‘

[1990a] suggest that ultimately self-similarity will be at- If we let

tained so « and F become constant, but it is possible that

these constants would be very large {a), and very small Q

{#). Furthermore, it has not yet even been tested experi- D =~

mentally whether the o — 3 formulation holds for = 3, Ho @

so observed o values are not available, and 2y = 100 is

probably unrealistically large. For T = 1 the largest then the evolution equations for a and @ are:

value of o achieved in Figure 1 is about 8, which is cer-

tainly consistent with observation.

Integrating for considerably longer times shows that in ;Qf‘m - _mL 2e(1 = B)(2 + 28 .32)@3
all cases so far examined o then reaches a minimum at 3 L ) o
about twice the time at which it achieves its pzak. In 4+ e B o~ Qo)+ 200 - B8)2 (a0

1 and 2 dimensions o then appears to tend to constants

o i1 A
of approximately 1.18 and 2.0 respectively, while in 3 di- - Bafl- B2+ 544 ek }
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B = Jofla-Q)+381-0)(Qs~ 0}
- 1%5(1 -3 [a,ﬁ{z — A0,
+ {(1-9 {3(1 + 83 - 2(1+28)0s )]
D= ala- 0y - 6(1- A0 - 0D

Thus the evolution of o and § is compietely determined
by L/L, (39 and (Ja. The general form for oo is

and letting

this becomes

4.1 Polynomial Approximations to the Gaussian

Fignre 2 compares the results for o and § with the Gaus-
sian mean, with those using the following polynomial ap-
proxirations to the Gaussian:

gi{g) = 1-9
. 1, 1.
gs{d) = Lm¢+§o - 50
1,1 1 1
R S DU NI L
fai®) 507759 TE T 15

Each of these polyncmials was truncated at its zero, For
the moderate times shown here the differences are not
very great. Up to the peak in o the resulis are indis-
tinguishable, The straight line portions for o at small
times for ©; = 100 correspond to development which very
closely approxirnates that for 1 = {, In the Iatter case
o = /o, where 6y is the source concentration, and for
1 3> 1 this implies a gradient %—m and intercept m for
the o plots shown, in good agrsement with the numeri-
cal results. Dependence on the precise form of the mean
only appeats at about the bime « peaks, when molecular
diffusion starts to have a significant effect on the devel-
opment. « is smaller, and 7 is larger, than with Gaussian
mean. For g:{¢). ae = 1 for m = 1,2,3; for gald), e
takes the values 1.011, 1.007 and 0,985 for m = 1,2 and

3 respactively; and for g5(d), e takes the values 1.058,
1.130 and 1.183. In all cases these values are less than
those for Gaussian g(4), and for m = 3 they are finite,
giving quite different large time behaviour frem the Gaus-
sian case. gs{@) in 3 spatial dimensions shows that the
closure does not ensure a > 1 in absolutely all cases—in
this case the minimum value of o s 0.96759 at a non-
dimensional time of about 137. Again the results for Ty
are very similar.

4.2 Spatial Decay of Mean Slower than Gaunssian
We also tesied how the model would behave if the decay
of ¢ with x were slower than Gaussian. We examined
exponential decay,

g(8) = h(#) = e"V?,

and algebraic decay,

(@) = fxld) = (L4477

In the latier case convergence of [ pdV for n < 3 re-
quires N > 3/2 {and automatically ensures satisfaction
of the condition far (2) te hold exactly, provided con-
centration fluctuations do net behave pathologically as
|x} — =a).

Figure 3 shows the results for A0}, fo{d) and f5(a], up to
r = 100. Again, the differences are very small up to the
peak in «, and then develop a little faster than for g: (9}
gsl@) and gs(#). Now o is larger, and @ smaller, than
with Gaussian mean. Very similar results are obtained

for Xg.

The limniting values of o for A{¢} are

f 2 m=1
Qpe = “‘“4,/5 m=3
—8/47 == ~{.170 m= 3.

Thus, in 2 dimensions o — 00, whereas in the (Gaussian
case it has a finite Hmit, For fv (@) we obtain

for m = 1;

(N — 12N - 1)

N
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far m = 3. Thus, for example, for N = 2

105/64 = 1.641 m= 1
oo = -1 o= 2
—7/64 = —-0.108 mo= g

and for V=13

15015/10688 = 1.403 O
o = 3 o= 2
~1001 /2880 ~ —0.348 m =3,

Again, these give unbounded growth of o in 2 dimensions,
in contrast to the Gaussian case. In the limit ¥ — oo the
Gaussian result for oo, {and also for Qz and Qq) is Tecov-
ered exactly, as is 1o be expected since (1-+4)=% ~ ¢~V
in this limit. Figure 3 also gives the numerical results for
fioo{#), which up to r = 100 cannot be separated from
the Gausslan results.

5. CONCLUSIONS

With f{¢), fo{ca) and f3(#} in 2 dimensions o grows un-
boundedly, in contrast to the Gaussian mean for which
too = 2. Conversely, o has a finite limit (< 2) for g,(4),
ga(?) and g5{¢) in 3 dimensions, whereas for the Caus-
sian & — oo. Thus, although the behaviour in all cases is
very similar around the peak in v at small times, at large
times the model behaviour can be quite different from
that obtained with Gaussian mean. This is true even for
the polynomial approximations to the Gaunssian. On the
whole the faster p decays with %, the smaller the values
of o, and the larger the values of 4.

However, since such large time behaviour in this simple
model is probably not practically relevant, it suggests
that the important aspects of the evolution of & and 2
are not very sensitive to the precise form of the mean, At
moderate times the differences produced by differences in
the mean would probably not be larger than those result-
ing from uncertainty in the closure parameter AVA
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